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ABSTRACT 

This thesis introduces a new algorithm for quickly answering repetitive least-cost 

queries between pairs of points on the Earth's surface as represented by digital 

topographical maps. The algorithm uses a three-step process; preprocessing, 

geometrically modified Dijkstra search, and postprocessing. The preprocessing step 

computes and saves highly valuable global information that describes the underlying 

geometry of the terrain. The search step solves shortest path queries using a modified 

Dijkstra algorithm that takes advantage of the preprocessed information to "jump" 

quickly across flat terrain and decide whether a path should go over or through a high-cost 

region. The final step is a path improvement process that straightens and globally 

improves the path. Our algorithm partitions the search space into free regions and 

obstacle regions. However, unlike other algorithms using this approach, our algorithm 

keeps the option of passing through an obstacle region. 

in 



LIST OF TABLES 

Table                                                                                                                page 

2-1 Example of an Elevation Array 3 

5.1 Search Results 35 

5.2 Comparison of 200 Runs of GMD vs Dijkstra Searches 36 

IV 



LIST OF ILLUSTRATIONS 

Figure Page 

2-1 Topographical Map Transformation 2 

2-2 Graph Representation of an Array 3 

2-3 4-Square vs. 8-Square Adjacent Nodes    4 

2-4 Cost Calculations on Elevation Arrays     5 

3-1 Blind Search Procedure 10 

4-1 High-Cost Convex Polygon 22 

4-2 The Partitioned Map 22 

4-3 Shortest Path Cost Ragged Array 23 

4.4 Search Through a Single Polygon 26 

4-5 Postprocessing 29 

5-1 3-Dimensional Representation of Elevation Array 31 

5.2 2-Dimensional Map Representation    32 

5.3 Path Avoiding Polygons 38 

5.4 Start and End Inside Polygons 39 

5.5 Search With Large High-Cost Regions 40 

5.6 Example of Postprocessing 41 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS ü 

ABSTRACT iü 

LIST OF TABLES iv 

LIST OF ILLUSTRATIONS v 

Chapter 

1. INTRODUCTION 1 

2. THE PROBLEM 2 

Topographical Maps 

Cost 

Dynamic Obstacles 

Types of Surface Terrain 

Applications 

3. BACKGROUND 9 

General 

Blind Search on the State Space 

All-Pair Shortest Path 

Motion Planning 

Potential Fields 

Geometric Techniques 

Edge Detection - Computer Vision 

vi 



4. GEOMETRICALLY GUIDED SEARCH ALGORITHM 20 

Bounding High Cost Terrain - Preprocessing 

Search Procedure 

Path Improvement - Postprocessing 

Summary 

5. EXPERIMENTAL RESULTS 31 

Implementation 

Test Method 

Preprocessing 

Search 

Postprocessing 

6. RECOMMENDATIONS FOR FUTURE WORK/ CONCLUSION 42 

Conclusion 

Future Work 

APPENDIX 45 

BIBLIOGRAPHY 46 

Vll 



Chapter 1 

INTRODUCTION 

Finding the least cost path is a challenging classical problem in computer science. 

For decades research has been conducted to solve the least cost path problem under a 

variety of situations. Today many real-time decision-making applications do repetitive 

mode queries, solving many shortest-path problems while generating a solution to a larger 

problem. Decreasing the effort when finding a path can greatly improve the overall 

performance of these software systems. 

Many methods are currently used to find the least-cost path from a single source to 

a single goal on a two-dimensional representation of a surface. Current research in 

shortest path planning primarily consists of a node generating blind search or complete 

obstacle avoidance. Both techniques have benefits and hazards when applied to 

topographic path planning. This thesis presents a new algorithm that quickly finds a near 

optimal path. Our algorithm combines the benefits of node generating searches with 

geometric techniques to quickly find a near optimal least cost path. 



Chapter 2 

THE PROBLEM 

2.1 Topographical Maps 

The domain consists of a topographical map, a cellular-decomposition 

representation of the earth's surface [1]. This map has two degrees of freedom x and y, 

looking down perpendicular on the environment. The variables x and y map to the 

elevation of the terrain, the z coordinate. 

Figure 2-1 Topographical Map Transformation 

The elevations found on the topographical map are used to construct the terrain 

matrix database or elevation array. Each {x,y} entry in the database corresponds to the 

average elevation (z value) for the corresponding piece of terrain. 



Table 2-1 Example of an Elevation Array 

X 
1 2 3 4 5 

Y 

1 10 12 12 14 15 
2 12 12 12 16 14 
3 13 14 13 14 13 
4 16 17 14 12 12 
5 20 23 16 14 10 

This thesis is only concerned with the elevation above sea-level. Many other 

features can be analyzed, such as surface type, vegetation, pollution, or population data. 

This abstraction of the terrain permits rapid computation and problem solving. More 

information on geocoding, the process of creating a digitized representation of the Earth's 

surface, can be found in [2] and [3]. 

Figure 2-2 Graph Representation of an Array 

The elevation array can be transformed into a simple graph. The {x,y} coordinates 

in the matrix correspond to vertices on a simple graph and are called nodes. The grid 

creates a regular lattice with diagonal arcs, such that each node is connected to its eight 

adjacent nodes [4]. From any location on the map (except those on the perimeter of the 

map) one can move to eight adjacent locations (North, Northeast, East. . .). The use of 



the eight squares rather than four squares better models how objects move on the Earth's 

surface. 

P P 

4-square 8-square 

indicates point is adjacent to P 

Figure 2-3 4-Square vs. 8-Square Adjacent Nodes 

2.2 Cost 

Crossing terrain requires the expenditure of energy. Climbing a hill costs more 

than walking down a hill, which costs more than moving over flat terrain (assuming a 

driver applies brakes and steering to maintain control of a descending vehicle). This 

expenditure is the cost to move from one vertex to another. If the slope and resultant 

cost between two vertices is too high, then the terrain is too steep to travel over safely, 

and the edge between the two vertices is removed. The cost to traverse the terrain is not 

explicitly stated in the database, but is a function of the change in elevation of two 

adjacent vertices. 

Elevation arrays commonly used in terrain analysis applications produce a "digital 

bias" [5]. Although some algorithms return a shortest path as an ordered set of adjacent 

nodes, they do not produce a Euclidean shortest path. Figure 2.4a represents an elevation 

array of a flat plane.   All direct paths from the start point S to the goal point G in the 



polygon bound by SAGB have the same length, 8.828. In figure 2.4b, path 2 is a more 

direct path than path's 1 or 3, yet all have the same length. Figure 2.4c shows the true 

shortest distance on the same plane. The line segment S->G is an example of the saying, 

"The shortest distance between two points is a straight line." A shortest path is then 

defined as the shortest ordered set of line segments from S to G. 

"2 Z (a) 

COSt =6 + 2 JT 
= 8.828 

^G 

S^ 

(b) 

(c) 

COSt= ^ATZ+A7Z 

= 8.246 

Figure 2-4 Cost Calculations on Elevation Arrays 

On a flat plane the true cost is the Euclidean length of the path. On rolling terrain, 

or terrain that changes elevation, the cost is a function of the change in elevation of each 



point.  Constraints imposed by the system which traverses the terrain must also be taken 

into account when developing the shortest path. 

2.3 Dynamic Obstacles 

In nontrivial applications additional obstacles may be created and destroyed at 

runtime. The ability to create and destroy dynamic obstacles permits users to analyze 

situations and perform "what-if' analysis. Examples of dynamic obstacles are polluted 

areas in cities, minefields encountered or planned in military mission planning, and air 

corridors closed due to bad weather. 

The term dynamic obstacles as used in this thesis should not be confused with 

dynamic obstacles used in robot motion planning. The field of motion planning refers to 

dynamic obstacles as objects that move about the search space while a search is being 

performed [6]. Finding a path across town for an automobile in the presence of 

pedestrians is an example of dynamic obstacles used in motion planning. This thesis is 

concerned with finding an algorithm that will quickly find a path in the presence of terrain 

features and temporary impenetrable obstacles. 

On a typical real-time application a user may add, move, or delete hundreds of 

these temporary dynamic obstacles while doing an analysis. These impenetrable obstacles 

are considered barriers that must be bypassed. The constraints imposed by dynamic 

obstacles have a significant effect on the algorithm analysis for this problem. 



2.4 Types of Surface Terrain 

The Earth's surface has a variety of features and terrain types ranging from flat 

plains to very rough mountain ranges. The shortest path on flat plains represents a trivial 

problem, being a straight line. Mountain ranges represent the other extreme, where the 

shortest path is much more difficult to compute. 

This thesis will focus on valley floors of desert plains, as found in the Mojave 

Desert of Southern California. These valleys are surrounded by very steep, impenetrable 

mountain ranges. The valley floors are roughly planar, with hills and outcroppings 

interspersed. This abstraction of the environment's surface is sufficient for introductory 

research, yet remains computationally challenging. 

2.5 Applications 

Shortest path algorithms are used in geographic information systems, military 

mission planning systems, autonomous robot route planning systems, terrain following 

"nap-of-the earth" aircraft route planning and city regional planning systems. Huge 

elevation databases have been developed by the U.S. Defense Mapping Agency [2] for use 

in both civilian and government applications. These data bases provide a rich area for 

theoretical and practical work on digital representations of real terrain. 

Other areas of shortest path applications similar to this domain include: 

• Shipping/Distribution Problem—planning the movement of products from a 
factory to a warehouse [7]. 

• Economics—building a network of nodes where each node represents a state, 
and edges represent costs to achieve future states. A decision at a node to take 
an edge transforms the problem to a future state. The goal is to find the 
shortest path that maximizes a future profit[7]. 
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Critical Path Analysis—performing operations research and planning analysis 
inmanagement[7]. 

Circuit Board Layout and VLSI Design—hills represent electrical 
components on the circuit board and paths over hills represent jumper wires 

[8]. 

Automated Traveling Advisory System—costs represent distances and 
dynamic obstacles represent potentially hazardous weather [8]. 

Remote Sensing—determining surface properties from images [9]. 



Chapter 3 

BACKGROUND 

3.1 General 

A technique to improve performance on repetitive-mode query applications is to 

precompute some information on the problem, and use that information to prune the 

search. One extreme is to precompute and store the entire finite set of all possible queries, 

providing an immediate access time with a very large storage overhead. The other 

extreme is to eliminate the precompute step and compute the entire solution with a high 

response time and no precomputation cost or storage overhead. The optimal solution is 

somewhere in the middle of these two extremes; use some initial precomputation effort 

and storage overhead to obtain a long-term gain in search time [10]. 

Shortest path research generally falls into two categories: 

• Blind Search over the State Space. These algorithms build a search tree 
superimposed over the state space. They conduct a blind search through the 
state space one node at a time without using global knowledge of the entire 
problem. These algorithms return optimal solutions, but are computationally 
and memory expensive. 

• Perfect Obstacle Avoidance on a Plane. These algorithms partition the 
domain space into perfect obstacles and perfect free space. The search for the 
best path avoids obstacles at all cost without checking if the path should go 
over an obstacle rather than around. Precomputed information are either paths 
that avoid obstacles or obstacle boundaries that must be avoided. Obstacle 
avoiding algorithms return quick solutions, but may overlook "short cuts" 
through obstacles that lead to globally optimal solutions. 



Before proceeding, the following notation is defined. The size of the elevation 

array database is N. The value of N is equal to the number of columns in the array 

multiplied by the number of rows. This N is also equal to the number of nodes in the state 

space of a graph representation of the elevation array. 

3.2 Blind Search on the State Space 

Blind search algorithms, or "informed best-first search algorithms "[11], represent 

one extreme to the solution of the shortest path problem. These blind searches, whether 

Dijkstra's algorithm, best-first, A*, or bidirectional A* [12] are essentially a modified 

Dijkstra algorithm. These algorithms build a search tree superimposed on the state space. 

The leaf nodes are nodes of the tree discovered or that have no children generated, and are 

maintained on an open list. Nodes that have been expanded are called inner nodes and are 

maintained on a closed list [8]. These algorithms use no precomputed information, 

computing the entire solution to a query on demand. 

Initial State 

LeafNodes 

Goal State 

Figure 3-1 Blind Search Procedure 

Heuristic search algorithms are called informed searches in the artificial intelligence 

community [8].   This term is misleading since heuristic searches have no information 
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except that found in the state definitions and the operators that change the states. 

Although heuristic searches have problem specific knowledge embedded in the operators 

[4] that causes them to search more efficiently than "uninformed" searches (breadth-first 

and depth-first), they do not use global knowledge inherent to the specific problem. 

These algorithms use a priority scheduling algorithm to select the next node for 

expansion, determine which adjacent children of a node are to be generated, and place 

generated nodes onto the priority queue. These algorithms suffer from the same lower- 

bound best-first time 0(n log n) where n is the number of nodes generated. This worst 

time is due to the management of the open-list [8]. Research has led to improving the 

heuristic used for placing a node onto the priority queue and bounding the search region 

[13]. 

Although all of the algorithms may return an optimal solution providing they have 

an admissible heuristic, they all suffer from serious inefficiencies. These flaws include: 

1. Time~The number of nodes generated and expanded is large which implies long 
search time. Often such algorithms waste time exploring unnecessary nodes in 
terrain databases. 

2. Space-These heuristic algorithms maintain all nodes generated and expanded in 
memory, which is a major constraint for any large map. Storing pointers and cost 
labels is a major drain on memory resources, causing the algorithm quickly to run 
out of memory on long searches. 

3. Ties on the priority queue and the order that nodes are created cause an arbitrary 
implied ordering. This may result in search paths predisposed toward one 
direction [11]. 

11 



Several ideas have been tried to improve heuristic searches. Techniques include 

generating the best child of a node (which does not guarantee to return optimal solution 

due to the horizon effect) and not searching the open or closed list that results in duplicate 

storage of identical nodes [8]. 

3.3 All-Pair Shortest Path 

The all-pair shortest path represents the other extreme to the shortest path 

problem. This algorithm precomputes the shortest path among all pairs of N points on a 

map, and saves the result to secondary storage. This algorithm has two extreme costs, the 

effort to precompute all of the shortest paths between N points and the storage of the 

solutions. The all-pair shortest path can be computed naively using a repeated Dijkstra's 

algorithm in 0(N2 log N) time. The storage for the N2 paths is 0(N3). By storing only an 

intermediate node m on the shortest path from i^j into an array A[i,j]=m, the shortest 

paths can be constructed by recursive queries to A[ ]. The array would require a total 

storage of size 0(N2). 

This trivial solution has two disadvantages that eliminate it as a practical solution. 

Dynamic obstacles may be inserted, deleted, or moved on the terrain at runtime, which 

will eliminate precomputed shortest path solutions. A possible alternative is to 

precompute and store some shortest paths. This would involve preprocessing critical 

shortest paths between nodes and storing the preprocessed data efficiently. This solution 

also relies on secondary storage (since searching will still need to be done for nodes not 

precomputed) and suffers from the dynamic obstacle problem. 

12 



3.4 Motion Planning 

Extensive research has been conducted in motion planning. Much of the research 

involves robot manipulator planning or perfect polygon-obstacle avoidance [6]. Latombe 

even goes as far as to define motion planning as "planning a collision free path for rigid 

objects among static impenetrable obstacles" [14]. 

Motion planning is performed on a planar map. The configuration space is the 

transformation from the real space of the earth's surface to another space where the robot 

is considered a point. The "difficult" terrain is surrounded by a perimeter considered 

impenetrable, creating obstacle regions. These perfect obstacle regions may be created by 

bounding the obstacle space with circles [15], minimum enclosed rectangles [16] or 

convex regions [17]. The problem becomes the finding of the shortest path between two 

points in a fixed environment with a collection of disjoint, impenetrable, immobile 

obstacles [18]. 

3.4.1 Skeletonization. 

Skeletonization is a class of algorithms that precompute some information and uses 

this precomputed information to decrease response time to queries. Two techniques 

applicable to topographic map research are visibility graphs and Voronoi diagrams. Both 

techniques require a free space/obstacle space representation of the search space. These 

techniques precompute a network (the skeleton) which represents a global overview of the 

terrain. The path from a start point S to a goal point G is found in three steps. First a 

minimal path is found from S to the skeleton, the intersection being Ii.  Next a minimal 
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path is found from G to the skeleton with the point of intersection being I2. Finally a path 

is found using graph theory from Ii to I2. 

Visibility graphs take the planar map and perfect obstacle regions and create a 

graph whose edges connect all pair of boundary corners that are visible from each other 

[19]. Extensive research has been done on the use of visibility graphs. 

Voronoi diagrams are networks consisting of a set of points equal distance from 

two or more object features [10]. Paths found on Voronoi diagrams appear to travel 

down the middle of valleys avoiding obstacles. 

Both visibility graphs and Voronoi diagrams have the benefit of capturing the 

global topology, thus finding paths quickly, although the resulting paths may be far from 

optimal. 

3.4.2 Cellular Decomposition 

The cellular decomposition algorithm [20] must also be given the free space and 

obstacle space representation as input. These algorithms divide the entire state space into 

cells, and build a connectivity graph of adjacent cells. The shortest path is found by a 

simple graph search through the connectivity graph. Schwartz's papers [19] on the 

collision-free path problem termed the "Piano-Movers problem" is considered a classic in 

motion planning. Quad-trees are another version of the cellular decomposition solution 

[6]. 

Although all of the preceding algorithms work very efficiently for perfect, 

impenetrable obstacles on a planar map, they do not work for this problem domain.  The 
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input for these algorithms requires the creation of impenetrable obstacle regions that 

cannot be traversed. One approach is to designate any region whose minimal elevation 

exceeds a threshold value. This approach may lead to a locally optimal, low quality 

solution, when a more optimal decision is to go over a small ridge than around it. A robot 

centered at the base of a very long ridge whose elevation narrowly exceeds the threshold 

would choose to go around the ridge when finding a point to cross over the ridge may be 

much shorter. A second limitation is that these algorithms do not permit the start point or 

end point to be inside an obstacle region. These constraints are too excessive for practical 

applications on terrain. 

A more serious limitation of the skeletonization algorithms is the introduction of 

dynamic obstacles. If a dynamic obstacle is placed on a point on the map that intersects a 

segment of the network then this segment of the network is no longer usable. Two 

techniques can deal with this situation; find an alternate route or calculate a bypass. A 

significant portion of the visibility graph or connectivity graph (on the cellular 

decomposition) may need to be recomputed every time a dynamic obstacle is introduced 

or deleted. These computations every time a dynamic obstacle is created, moved, or 

destroyed are very expensive in time and space, and may result in excessive computations 

to maintain the networks. 

3.4.3 Weighted Region 

In weighted region algorithms the plane is divided into regions with weights 

representing terrain features.  The weights are the costs to move per unit distance across 
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the terrain. Dynamic obstacle regions would be given the weight infinity. This technique 

turns out to be no more than conducting a blind search using Dijkstra or other technique. 

The "good runner—poor swimmer" problem and the "maximum concealment" problems 

are both solved on terrain maps using the weighted region algorithm. The weighted 

region algorithm can be converted into a graph problem by transforming the regions with 

equal weights into polygons and performing a graph search[5]. 

The weighted region algorithm is not applicable to this thesis because of its 

technique of modeling cost. Cost on weighted regions is the value ofthat piece of terrain 

in an array (a node in a graph). Cost on the elevation array is the change in elevation 

between two points (the edge that connects two vertices). The cost to get to a piece of 

terrain is dependent on the direction used to move to that piece of terrain. This 

observation eliminated weighted regions as a possible solution. 

3.5 Potential Fields 

Potential fields calculate a scalar quality for every point on the terrain surface. 

This quantity is zero at the goal, a very high value at obstacles, and decreases as a point 

moves away from obstacles toward the goal. The path from the start to the goal is 

synonymous to a marble rolling down a hill toward the goal [21]. The value for a point 

{x,y} on the ground is: 

1 (   number of obstacles i A y       i  
j-(        distance ({x, y), obstacle\ )J    distance ({x, y},goal) 
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Potential field algorithms can deal with dynamic obstacles by setting the value of 

points in dynamic obstacles to oo. A significant drawback to these algorithms is that the 

entire region 0(N) must be computed for every query and every time a dynamic obstacle 

is created or destroyed. This is a significant effort for a very large search space. 

3.6 Geometric Techniques. 

Geometric techniques can be used to find a solution on two or more dimensional 

surfaces quickly. These algorithms have the benefit of using line segments and returning 

paths as sequences of line segments rather than long lists of adjacent coordinates. 

3.6.1 Taut String Algorithm 

Given the elevation array, a free space/convex polygon obstacle space 

representation of the surface is precomputed. Finding the shortest path from S-»G is 

called the "taut string" approach. A path is found when a string is threaded from the start 

point through the obstacles to the goal and pulled tight. The difficulty with this algorithm 

is deciding how to thread the string through the obstacles, since there are an infinite 

number of ways [5]. 

Solving the problem with simple polygons is similar, except that the number of 

points to store, and the computation effort is significantly more. It should be noted, that a 

line segment will not enter the concave portion of a simple polygon when finding the 

shortest path unless the start and goal are inside the concave portion [10]. This 

observation will be used later in this thesis. 
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3.6.2 Shortest Path on a Surface. 

The elevation database is transformed into a 3-dimensional representation of the 

surface. Techniques include flat plane and cylinders [5] and polyhedral surfaces with 

faces. These algorithms are related to triangulated irregular networks (TIN) in geography 

[2]. 

Many algorithms have been found that make a good quick initial guess to the 

solution, followed by a path improvement algorithm. Kimmers continuing research has 

had success finding the shortest path on a 3-dimensional polyhedral surface. This 

approach was stated as useful in CAD and land-surveying applications. 

3.7 Edge Detection - Computer Vision 

Edge detection is a crucial part to any computer vision system, where they are 

used to build objects that are then analyzed. Edge detection is used in optical character 

recognition, signal processing, robot vision and industrial inspection, and remote sensing. 

Computer vision algorithms use a variety of data structures (square, triangular, hexagonal) 

and techniques to build and manipulate these structures [9]. The technique of edge 

detection and region analysis in computer vision can be used to bound high-cost regions. 

These techniques take key points on the terrain map and combine them into sets of closed 

line segments that represent simple polygons. 

Although these techniques do not represent a shortest path problem-solving 

strategy, they do suggest techniques and data structures that can be used to precompute 
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information about the global characteristics of the terrain.  This precompiled information 

can be saved and used in a shortest path algorithm. 

In an attempt to avoid the above noted problems, research was focused on 

combining the procedures of node generating search with geometric techniques. By 

combining these techniques it is possible to find a near optimal shortest path quickly that is 

not adversely effected by dynamic obstacles. 
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Chapter 4 

GEOMETRICALLY GUIDED SEARCH ALGORITHM 

The central idea to this new algorithm is to exploit as much global information that is 

available about the terrain to make a quick, high-quality decision. A value in the elevation 

array describes the characteristics of the piece of terrain that value represents, while 

implicitly describing the relationship the piece of terrain has to its neighbors. This 

algorithm begins by taking a step back and examining the entire terrain, looking for 

regions a path "might" not want to travel through, and stores these precomputed high-cost 

regions for future use. This precomputing is synonymous with a person performing a 

quick terrain analysis before trying to solve a geographic problem. A terrain analysis 

permits the system to exploit the underlying geometry of the terrain rather than 

concentrating on single points on the ground. In repetitive mode applications this initial 

cost of preprocessing and storage provides a long-term gain in searching. 

This algorithm solves the shortest path problem in three steps. First, highly valuable 

global information about the terrain is precomputed. In this step the high-cost regions are 

found and saved as closed convex polygons. The next phase computes and saves the cost 

for paths among all points on the perimeter of the polygons. 

The second step of the algorithm involves solving search queries. The algorithm 

projects the polygons onto a plane and searches for the shortest path by projecting a line 
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segment from the start point to the goal across the plane. If the line intersects a polygon, 

the algorithm determines if going over is shorter than around the region, using the 

precomputed global information. In the final step the algorithm does a path-improvement, 

postprocessing step to globally improve the path found. The algorithm quickly returns an 

approximate shortest path. 

4.1 Bounding High Cost Terrain -- Preprocessing. 

Given an elevation array, the algorithm bounds high cost regions with convex 

polygons. These convex polygons are similar to contour intervals or iso-elevation curves 

found on geography maps[2]. This preprocessing step is performed once with the high- 

cost regions saved and used during path finding queries. 

The decision to use convex polygons over simple polygons was due to the smaller 

space and reduced computational complexity of convex polygons. A shortest path 

between two points will not enter the concave portion of a simple polygon unless the start 

or end points are contained inside the concave region. The storage of convex polygons is 

significantly smaller (fewer numbers of points on the perimeter), and computations are 

significantly faster and less complex than similar computations using simple polygons. 
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starts 

High cost region 

j> goal 

Covex polygon 
perimeter 

Figure 4-1 High-Cost Convex Polygon 

High cost regions are found by slicing the terrain with two parallel horizontal planes. 

All points between the planes are considered low-cost terrain points. All points above the 

upper plane and below the lower plane are considered high cost terrain points. High cost 

terrain points that are in close proximity are bound by a convex polygon. These polygons 

are saved as the obstacle space. 

upper plane 

lower plane 

high cost regions 

Figure 4-2 The Partitioned Map 

For this thesis the two planes are the base plane of the topographic map and a 

horizontal plane at an elevation 8. The 8 value is a subjective elevation above which paths 

do not tend to enter because of the costs incurred. The intersection of the plane at 8 and 
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any high cost region is a contour, a simple polygon, which can be transformed into a 

convex polygon using Graham's Scan[10]. 

The next step to preprocessing is computing the shortest path cost among all pairs of 

perimeter points for each convex polygon. The shortest paths are stored in a ragged array 

[22] as in figure 4.3. If i and j are coordinates on the polygon perimeter, then the entry in 

row i, column j is equal to the entry in row j, column i. Both values do not need to be 

stored, so only -n(n -1) entries are necessary per polygon where n is the number of 

points on a polygon perimeter. 

a | b | c | d 
a 
b~      1 
 I 

d ■ 
Figure 4-3 Shortest Path Cost Ragged Array 

4.2 Search Procedure 

A uniform cost horizontal plane is used representing the low-cost terrain. The convex 

polygons, representing the high cost regions, are projected onto this plane. Given a start 

point and a goal point, a line segment is projected between these two points. If the line 

segment intersects a polygon, the algorithm determines if going around to the left, to the 

right, or over the region is best. 

Labels on the map represent known costs from the start point to the node. All points 

on the terrain map begin unlabeled, and only explored nodes get labeled which eliminates 
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initializing the entire map. The below algorithm applies to cases where the start and goal 

are outside polygons. Additional steps are necessary if the start or goal are inside 

polygons. The search algorithm requires three functions; add_or_relabel(), 

process_line(), and search_routine(). 

Given a point x on the map, a cost label c, and a priority-queue Q, add_or_relabel 

determines if a new path to x with cost c is a new or better path to x. If x has not been 

labeled before, it is labeled with cost c and pushed to the priority queue. If x has been 

labeled and c is less than the old label then x is relabeled and repositioned in Q based upon 

this new label. A point on the perimeter of a polygon is said to be visible from G, if 

ignoring all other polygons, a line segment can be drawn from G to the point without 

entering the polygon. Procedure add_or_relabel() is only called for the start point, goal 

point, and points on the perimeter of a polygon that are visible from the goal. 

Procedure add_or_relabel(x, c, Q) 
Input;   A point on the map x, a cost label c, and a priority queue Q 

begin 
if x is not labeled then 

label(x) = c 
Q<-x 

else if 1 < label(x) then 
label(x) = c 
reposition x in Q 

end 

The function process_line() takes a start point s, a goal G, and the priority queue Q. 

Processjine uses a stack to store lines(start,goal) that it is currently processing. It pops a 

line segment off the stack and checks if the line intersects a polygon. If the line does not 
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intersect a polygon it sends the point and its newly computed label to add_or_relabel(). If 

the line intersects a polygon then the function computes the cost to get to three points on 

the polygon perimeter visible from G, and sends these three points to add_or_relabel(). 

These three points represent the paths to go through, around to the left, and around to the 

right of the polygon. 

Procedure process line(x, G, Q) 
Input:   A point x that is either a start point or a point on a polygon visible from 
G, the main goal point G, and a priority queue Q 

function d(a->b) distance from a to b 
saved[a,b] = precomputed cost of path for points a,b on perimeter of p 

begin 
stack = 0 
stack <- (x,G) 
while stack * 0 do 

begin 
(s,g) <- stack 
if line(s,g) does not intersect any polygon then 

add_or_relabel(s,l(s) + d(s,g), Q) 
else /* refer to figure 4.4 */ 

let p be the first polygon intersected on line(s,g) 
let Fl and F2 be the intersection of line(s,g) with the boundary of p. 

Fl is on side of S and F2 on side of G 
add_or_relabel(F2, l(s) + d(s->Fl) + saved[Fl,F2], Q) 
if line(s,tl) does not intersect any polygon then 

find nearest boundary point tpl of p visible from G 
add_or_relabel(tpl, l(s) + d(s->tl) + saved[tl,tpl], Q) 

else 
stack <- (s,tl) 

if line(s,t2) does not intersect any polygon then 
find nearest boundary point tp2 of p visible from G 
add_or_relabel(tp2, l(s) + d(s->t2) + saved[t2,tp2], Q) 

else 
stack <- (s,t2) 

end 
end 
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Process_line() uses a function d(a,b) which calculates the Euclidean distance from a to 

b. It also uses the precomputed polygon path costs maintained in saved[a,b], where a,b 

are points on the perimeter of polygons. 

The function search_routine() is the main search routine. This function is sent the start 

and goal points for a path query, The function terminates when it finds its best path. 

Procedure search_routine(S,G) 
Input:   Points on the map S,G 

begin 
Q<-x 
while Q * 0 do 

begin 
x<-Q 
process_line(x,G,Q) 

end 
end 

+ G 

Figure 4-4 Search Through a Single Polygon 

This algorithm resembles a Dijkstra's algorithm that begins at S. Unlike traditional 

Dijkstra's that at one step only examines its eight adjacent nodes, this algorithm only 

examines the nodes visible from G on the perimeter of an intersecting polygons.   These 
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descendant nodes are points visible from G and are labeled with a cost and a pointer to 

their ancestor. These descendant nodes are pushed onto a priority queue and the next 

node explored is the node on the queue with the lowest cost. When process_line() is 

called from search_routine() it is sent the main goal G, and searches from the node x will 

always seek G. If a node is discovered that was previously discovered and the new path 

from start to the node is shorter than the previous path, the cost label and the parent 

pointer are updated to reflect this better path. Using this method duplicate nodes for the 

same piece of terrain are not maintained. 

The algorithm does not perform node generation on relatively flat terrain but "jumps" 

to another polygon or to the goal. The result is that only the start node and nodes on the 

perimeter of polygons visible from G can ever be expanded. This significantly reduces the 

search effort. When a line segment intersects a polygon, the precomputed costs are used 

to avoid searching inside the polygon. 

If a start point is inside a polygon, Dijkstra's algorithm is used to find an efficient path 

out of the polygon to a point p which is visible from G. Once a path out of the polygon 

has been found the algorithm solved the problem from p to G and the solution path is 

S-»p-»G If the goal is inside a polygon the algorithm finds a path out of the polygon to a 

point p which is visible from S and the solution is S—»p—»G. 

Performance of the search algorithm is very much dependent on the terrain data. If the 

input map contains no obstacles then the algorithm returns a straight line segment S-»G 

If the terrain map in contained inside a single high-cost polygon then the algorithm 
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performs a Dijkstra search requiring 0(N log N) time and 0(N) space. In    practice    the 

algorithm performs much more efficiently. 

The total space required for the search is the number of nodes on the open list and the 

path pointers maintained. Since searching for paths through polygons is delayed until last, 

the only nodes which have pointers are nodes on the perimeter of polygons. The space 

requirement therefore is O(k) where k is the number of points on the boundary of 

polygons. 

4.3 Path Improvement — Postprocessing 

A postprocessing step is not necessary when solving a perfect-obstacle, shortest path 

problem. The resultant path segments always start and end on polygon perimeters, except 

possibly the start and goal. A solution path cannot be shortened without entering a 

polygon which is not permitted in perfect-obstacle algorithms. When using Dijkstra's 

algorithm it is possible to remove nodes from a path which result in less bends and 

possibly a shorter path. 

The postprocessing algorithm examines every ordered subset of three nodes {ni,n2,n3} 

in a path set p. If the cost of line segment ni-»n3 is less than or equal to the cost of the 

line segment ni-»n2-»n3 then {ni,n2,n3} is replaced with {ni,n3} in p. 

Figure 4.5 represents a flat plateau bounded by a convex polygon. The start point S is 

on the plateau and the goal G is to the left of the plateau on the plane. A search begins 

with a search from S to find a path off the plateau to a point visible from G. Figure 4.5a 
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shows all points visible from G (small circles). The first node discovered on the perimeter 

is p. The search continues from p to G and concludes with a line segment from p to G. 

The path returned Q is {S,p,G}, shown in figure 4.5b. 

The path improvement algorithm examines every ordered set of three nodes beginning 

at the start coordinate. Path {S, p, G} is examined, and since the path segment S->p->G 

is longer than the path segment S->G(figure 4.5c). Removing p shortens the global path, 

therefore p is removed from Q. The final path Q is {S, G}, figure 4.5c. 

Figure 4.5 Postprocessing 

This approach uses a heuristic to solves the problem of start or goal inside polygons. 

A point on the perimeter of a polygon is said to be visible from G, if ignoring all other 

polygons, a line segment can be drawn from G to the point without entering the polygon. 

Finding a point on the perimeter of a polygon visible from G may lead to global paths that 

are far from the optimal path. A point on a perimeter of a polygon may be visible from G, 

but may actually be hidden by many other polygons. These other polygons may force the 

globally optimal path to go around to the back of the original polygon. 
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4.4 Summary 

This algorithm performs a rapid approximation of the shortest path. The quality of 

this solution is bound by the value of 8. In one extreme case 8 is set to the maximum 

elevation of the topographic map (or greater). In this case the search space will be a flat 

plane with no obstacles and all searches S-»G will return a straight line. In the other 

extreme case 8 is set to one, and the algorithm will perform Dijkstra's algorithm across the 

entire state space. The quality and time/space cost is a function of the resolution of the 

contour interval. 

Dynamic obstacles do not effect this algorithm. They are treated as polygons with QO 

cost to enter. Searches through the center of dynamic obstacles would not be performed 

since this would only return a path around the perimeter of the dynamic region polygon. 
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Chapter 5 

EXPERIMENTAL RESULTS 

5.1      Implementation 

All algorithms were written in C and run on an Intel Pentium 166 machine. The 

terrain elevation databases consisted of 90x60 arrays of integers that permitted detailed 

analysis of the search algorithms. Most maps were generated with a random terrain 

generator, which created hills of random heights at random coordinates. Some were 

manually created to test worst case terrain. The 8 was chosen as the value of the base 

plane of the elevation array. All elevation arrays are identified topo« where n is the 

identifier to the array. Figure 5.1 is a 3-dimensional representation of one elevation array. 

y axis 

xaxis 

Figure 5-1 3-Dimensional Representation of Elevation Array 
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Figure 5-2 is a 2-dimensional representation of the map, looking down onto the 

terrain. The shade of a region corresponds to the elevation ofthat portion of the terrain. 

White regions are on the low-cost regions of the plane. Light gray, dark gray, and finally 

black regions have increasing values of elevation. High cost regions are bound by dotted 

lines representing the boundary of high-cost convex polygon regions found during 

preprocessing. Heavy dark lines are paths found using the geometrically guided search 

algorithm and thinner lines are paths found by a Dijkstra search. The x and y axis are the 

horizontal and vertical axis's on the map respectively. Points on the terrain are noted by 

x-coordinate, y-coordinate. 

path found by 
geometrically 
guided search 
(BLACK) 

start point 

slight path 
improvement 
caused by 
going over 
end of ridge 

hilltop 

path found by Dijkstra 
(GRAY) 

Figure 5.2 2-Dimensional Map Representation 
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5.2      Test Method 

A variety of maps have been used to test the algorithms throughout this thesis. Six 

maps were chosen to summarize the results. The terrain data topo3 and topo6 were 

added to test the worst case resulting from running Dijkstra algorithm on large 

regions. All maps are found in the appendix. 

• topol.map:    The basic map used for initial research consisting of eight 
various, almost convex outcroppings. 

• topo2.map: A map with many, very small, convex regions. 

• topo3.map:   Two major mountain regions shaped as simple polygons whose 
shape traps major regions inside their convex regions after preprocessing. 

• topo4.map: Several long ridges as found in desert plain regions. 

• topoS.map: A map with several large convex polygons. 

• topoö.map:  One large U-shaped ridge line that traps most of the planar map 
inside its convex polygon after preprocessing. 

5.3 Preprocessing 

A preprocessing step represents a one-time fixed cost that must be taken into 

account when evaluating an algorithm. In many applications this preprocessing can be 

completed in advance and saved, thus save time during queries. 

Simply adding the fixed preprocessing cost into the search time can be deceiving. 

If only one search is performed and the preprocessing time is added to the search time, the 

preprocessing will seem detrimental. As the number of searches increase the fixed cost is 

divided over the number of searches performed.   The preprocessing time per search will 
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approach zero as the number of searches approaches oo. 

5.4 Search 

Searches were performed and the results are summarized in table 5.1. An analysis 

of the running time between the two algorithms showed an average decrease by a factor of 

about four. Using the running time as a metric for performance can also be deceiving, 

since the running time is implementation and machine dependent. The measure of the 

number of nodes explored was used because it is not implementation specific and offers a 

more scientific measurement. 

Table 5.1 lists a number of searches performed on each of the six maps. The 

specific searches were used to illustrate specific principles and issues. The first column of 

the table is the terrain map. The second and third columns are the start and goal points on 

the specific map and are illustrated in the appendix. The path costs are the costs that were 

found for specific paths. The unimproved geometric search cost (UGMD) was included to 

show the performance improvement of the postprocessing step. The percent change is the 

increased cost of a path found by the geometrically modified Dijkstra (GMD) over the 

standard Dijkstra's algorithm (D). 

34 



Table 5.1 Search Results 

Terrain 
Map 

Search Path Cost Nodes Examined 

Fig. 
start 
x,y 

goal 
x,y UGMD GMD D 

% change 
D to GMD GMD D 

Ratio 
D:GMD 

Topol A(5,5) B(85,55) 103.46 103.5 100.71 2.66 15 1537 101.47 
C(30,5) D(50,40) 68.44 68.44 64.93 5.13 4 2489 621.25 5.3 
E(10,20) F(80,20) 119.55 118.7 118.67 0 10 4850 484.00 5.2 
G(5,30) H(85,30) 136.56 136.6 131.18 3.94 10 4905 489.50 

Topo2 A(5,5) B(85,55) 155.19 155.2 151.07 2.65 9 5351 593.56 
C(10,21) D(80,21) 108.73 107.4 107.41 0 11 4477 406.00 
E(20,35) F(65,25) 95.06 92.06 85.2 7.45 30 3946 130.53 
G(20,20) H(40,55) 64.66 64.66 64.66 0 13 3286 251.77 

Topo3 A(5,5) B(85,55) 172.88 170.4 170.4 0 7 5365 765.43 
C(30,30) D(60,30) 53.25 53.25 53.25 0 90 1848 19.53 
E(35,20) F(60,40) 83.33 82.8 75.06 9.35 636 3392 4.33 
G(5,7) B 178.35 178.4 156.57 12.21 5 5352 1069.40 

Topo4 A(5,25) B(85,25) 146.65 139.3 135.19 2.92 13 5265 404.00 
C(10,18) D(85,55) 148.22 141 139.22 1.24 27 5352 197.22 
E(45,2) F(45,40) 70.97 67.97 67.09 1.29 7 2628 374.43 
G(70,40) H(5,20) 109.93 109.9 109.93 0 10 5010 500.00 

Topo5 A(5,5) B(85,55) 158.1 155.5 151.07 2.82 1 5352 5351.00 
C(25,40) D(80,5) 139.05 139.1 130.26 6.32 76 5266 68.29 
C E(40,20) 101.12 80.49 76.97 4.37 111 2607 22.49 5.4 
F(5,40) G(82,34) 138.9 137.1 136.26 0.64 13 4916 377.15 

Topo6 A(5,5) B(85,55) 182.7 182.7 180.28 1.32 4 5369 1341.25 
C(25,40) D(55,40) 77.71 77.71 77.71 0 2515 2515 0.00 
E(40,35) F(55,55) 51.62 39.32 39.32 0 662 1166 0.76 
E G(5,55) 82.5 78.11 70.2 10.13 662 3264 3.93 

UGMD ~ unimproved geometrically modified Dijkstra's algorithm 
GMD — postprocessed geometrically modified Dijkstra's algorithm 
D — Dijkstra's algorithm 
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Three extreme cases are very interesting. Topo5 search from A->B represents a 

path across the diagonal of the map that does not intersect any polygon. In this case 

Dijkstra explored 99% of the map to find the path, while geometrically guided algorithm 

only explored one node, the start point. The path cost is very close to the optimal path. 

Topo3 search E—»F performs two searches to get out of two polygons, and combines 

these paths with a line segment. The cost represents the worst case, often higher than the 

Dijkstra path. Topo6 search C—»D represents both the start and goal inside a single 

polygon, so the resultant path is equal to the standard Dijkstra algorithm. 

Table 5-2 Comparison of 200 Runs of GMD vs Dijkstra Searches 

Increase 
Map in path 

cost 
topol 5.48% 
topo2 0.62% 
topo3 7.50% 
topo4 2.32% 
topo5 7.49% 
topoö 11.91% 
Average 6.05% 

The results in Table 5.2 are from 200 random searches on each input map. The 

results illustrated in table 5.2 show a slight increase in cost. The increase in path cost was 

minimal on maps with smaller high-cost regions (1,2,4), with the geometrically guided 

algorithm returning near optimal paths. On these maps' paths found through the high-cost 

regions, when combined with line segments outside these regions, approach optimal paths. 
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Elevation arrays are approximations of the real terrain, and errors are introduced 

into the elevation array during the geocoding process. Node searching introduces 

digitization bias on the path, and rounding errors are introduced when working with real 

numbers on digital systems. Since the actual input and processing produce rough 

approximations to the actual terrain and paths, the percentage of change in search cost 

was not significant. 

The search effort, as measured by the number of nodes explored, was very small 

on sparse maps. Long, relatively flat regions were "jumped over" quickly rather than 

searched one node at a time. The algorithm jumps from the start to nodes on the 

perimeter of obstacles in the direction of the goal. The algorithm does not explore any 

nodes except those on the perimeter or inside obstacles, resulting in a tremendous effort 

reduction on sparse maps. 

In sparse maps the search quickly found line segments to paths outside polygons 

and could perform quick heuristic searches in the small convex polygons. The effort for 

these searches was very small because sparse areas are quickly jumped over rather than 

searched one node at a time. 
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Figure 5.3 Path Avoiding Polygons 

Figure 5.3 is a typical search where neither start nor end points are inside convex 

polygons. The cost between Dijkstra and geometric search are close, but the path 

returned from the geometrically guided search (dark line) is a smoother, direct route. 

When a line segment projected from the start to the goal intersected a polygon the 

algorithm found three paths; left, right, and through the polygon. The right path (from C 

to D) was found to have a lower cost. The path is a line segment from the start point to 

the right tangent point, to the goal. 
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path found 
from Dijkstra 

Figure 5.4 Start and End Inside Polygons 

Figure 5.4 is an example of a path with both the start and goal inside polygons. 

Dijkstra's algorithm returns an optimal path. The geometrically guided algorithm quickly 

found a path out of the polygons to reduce the search effort, and completes the route to 

the goal. The postprocessing determined that it could prune off some of the route making 

the global path shorter and more direct to the goal. 

The worst cost paths were those with large convex polygon regions. This 

performance is attributed to the large node-generating searches that must be performs, in 

addition to the overhead of the geoguided search. On these regions the preprocessing 

bounds large areas of low-cost regions inside perimeters when it converts polygons from 

simple to convex. 

If both the start and goal are in the same polygon then the search is simply a 
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Dijkstra search. If the start and goal are outside these regions, the algorithm quickly finds 

a path around without searching the entire map. If a start or goal are inside a regions a 

Dijkstra search is performed to find a path quickly out of the polygon to a point visible 

from the goal, and this path is connected with other paths to create a solution path. This 

connecting of path segments can result in high-cost solution paths if optimal subpaths do 

not combine to an optimal global path. 

Path found 
from GMD path found 

fromUGMD 

-*'lt';;^":";^           S 

_               :■■■.■:«■!" 

TT 

■■■■■■■■■■                                                ■;'.'!>;*■; 

-—Path found from 
f             Dijkstra's algorithm 

Figure 5.5 Search With Large High-Cost Regions 

In maps with many regions the geometrically guided search proved a dramatic 

improvement by decreasing the number of nodes that must be explored. This is because 

only nodes on the perimeter of polygons that are in the direction of the goal can be 

labeled, resulting in a tremendous reduction in the number of nodes explored. 
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5.5 Postprocessing 

The postprocessing is performed very rapidly, combining many locally optimal 

paths into an improved global path. Its effect is to tie local path segments together and 

globally improve the path. The geoguided search finds a route quickly out of the polygon. 

The postprocessing prunes nodes off the path, which globally improves the path. 

The postprocessing step improved the paths, in some instances dramatically. In 

figure 5.6 a path was quickly found out of the high-cost region, and to the goal. This path 

is far from optimal. The path improvement step is applied, tuning local paths to a better 

global path solution. 

+ 

original 
unimproved 
geometrically 
guided path 

pijkstra's Path 

improved 
geometrically 
guided search 
path 

Figure 5.6 Example of Postprocessing 
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Chapter 6 

CONCLUSION /RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusion 

Searching on topographical maps continues to be an interesting problem. The 

problem offers many challenges due to the diversity of the Earth's terrain, man-made 

modifications to the natural terrain, and the applications for which a path is being found. 

Current research continues to investigate the shortest path problem in many fields of 

study. 

The three step approach applied in this thesis proved to be very effective. From 

the experimental results the thesis can be summarized as follows: 

1. A quick preprocessing step provides the main search routine with a small amount of 
very important global information that can dramatically reduce the search effort and 
time. 

2. The additional space needed for the preprocessed information is offset by the reduced 
amount of space needed during the main search routine. The preprocessed path costs 
eliminated repetitive searches through rough terrain that is very costly to search. 

3. The main search routine jumps over flat terrain and does not waste time and space 
searching flat terrain. This jumping across flat terrain saves tremendously on the 
search effort. 

4. The postprocessing step provides global path improvement and path straightening. 
The solution from the postprocessing may take a significant smaller amount of space 
since it transforms straight paths of nodes to a line segment of two nodes. 
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6.2 Future Work 

A possible direction for future work is precomputing implicit roads. The 

motivation behind precomputing implicit roads is that on certain terrain, paths gravitate 

toward locations that are easy to travel. These paths are like trails made in the wilderness 

because man and beast tend to travel on certain types of terrain. The implicit roads 

algorithm used a precomputation step that recursively partitions the landscape into smaller 

and smaller pieces along these implicit roads. The solution of the precomputing created a 

network of implicit roads similar to skeletonization. When a path is needed between two 

points, the algorithm finds a short path from the source to a road, travel through these 

precomputed implicit roads, and compute a path from a road to the goal. 

This thesis introduced many other unanswered questions that are open to the 

inquisitive researcher. These areas include: 

• Solve for Simple Polygons ~ The transformation from simple to convex polygons 
during the precomputing step greatly simplifies the search problem and 
precomputation space requirements. Eliminating the conversion to convex polygons 
and solving the shortest path with simple polygons introduces many additional 
challenges. On certain terrain simple polygons may prove beneficial to reduce the 
search effort. 

• Conversion to Contour Intervals ~ By repeated calls to the precomputing step for 
an increasing value of 8, the elevation array topographical map is transformed into a 
plane with concentric, closed (simple or complex) contour intervals. These intervals 
bound regions whose elevations are greater than the contour value of 8. The search 
does not use the elevation array, so after precomputing it can be permanently removed 
from memory. The solution to a path query is solved as a computational geometry 
problem. 

• Shortest Path, Intermediate Point Data Structure — Any path segment contained 
inside a shortest path is itself a shortest path. Using this observation, it makes sense to 
store solution paths into an efficient data structure that can be quickly searched. When 
solving a query the data structure is searched and returns the solution if found.  If the 
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• 

solution is not found then the problem is solved and the data structure is updated with 
the solution. All paths cannot be stored efficiently as mentioned earlier (0(N2) for N 
points on a map), so it makes sense to store special paths, perhaps implicit roads. 
Using this data structure, not only the shortest path costs, but the actual paths could 
be stored, eliminating any Dijkstra search through polygons. 

Link Metric - Many applications are constrained by solution paths that have a 
minimal number of bends or maximum angle of bends. Autonomous robot motion 
planning and high-performance aircraft flight planning are examples of these 
applications. Examination and comparison of algorithms based on the number and 
extent of bends in the paths provides a rich area of research that is just beginning to be 
explored. 

Additional Topographical Map Data - the input for this research was simplified to 
create a manageable search problem. Additional man-made terrain features can be 
included to increase the complexity of the problem. Typical terrain features include 
roads, rivers, bridges, fences, and tunnels. 

Preprocessing on Demand ~ Rather than preprocess all shortest paths through 
polygons, process them as needed and store them. This would resemble the system 
learning the shortest paths through polygons and remembering them for future use. 
This would eliminate the preprocessing costs, and slow initial searches, but would 
result in searches only performed for actual paths needed. 

Point inside Polygon ~ The current heuristics do not perform well all of the time 
when a start or goal are inside a polygon. There are many difficulties that arise on real 
terrain when computing the shortest path with large regions, providing an additional 
area for future research. 
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APPENDIX 

Maps Used for Analysis 
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